Facilitating finding and selecting potentials from the Interatomic Potentials Repository

Lucas M Hale Zachary T Trautt Chandler A Becker Rebekah Newby

National Institute of Standards and Technology U.S. Department of Commerce

See preview at https://www.ctcms.nist.gov/potentials/testing/

Interatomic Potentials Repository 2.0

- New appearance and backend!
- More consistent content representation
- Reaching 200 interatomic models
- Property evaluations updated
- Documentation for Python tools
- Working out final issues before release

IPR Interatomic Potentials Repository Home Alomman iprPy References FAQ Resources	People	Contact	
		Contact	
Notice! This site is currently under construction and testing.			×

Overview

This repository provides a source for interatomic potentials (force fields), related files, and evaluation tools to help researchers obtain interatomic models and judge their quality and applicability. Users are encouraged to download and use interatomic potentials, with proper acknowledgement, and developers are welcome to contribute potentials for inclusion. The files provided have been submitted or vetted by their developers and appropriate references are provided. All classes of potentials (e.g., MEAM, ADP, COMB, Reax, EAM, etc.) and

materials are welcome. Interatomic potentials and/or related files are currently available for various metals, semiconductors, oxides, and carbon-containing systems.

JL	ST								earch NIST 🍳	
IPR-	Interatomic Potentials Repository	Home	Atomman	iprPy	References	FAQ	Resources	People	Contact	
Noti	ice! This site is currently under construction and te	sting.								×
War	ning! Note that elemental potentials taken from allo ead of being optimized separately. As with all intera	oy descript tomic pote	ions may not v ntials, please o	vork well fo	or the pure speci nake sure that the	es. This is e performa	s particularly tru ance is adequat	e if the elem e for your pr	ents were fit for co oblem.	mpounds X
Coo	I! Click on a potential's identifier for computed prop	perties.								×
Ni 🗗 Ni-Z) AI-Co-Ni () AI-H-Ni () AI-Ni () 1 ()	Co-Ni (Cr-Fe-	Ni 2	Cu-Fe-Ni 1	Cu-Ni (O Fe-Ni	Nb-N	Ni 1 Ni-Ti 1	Ni-Ti-V
Ni										
201	8Etesami-S-A-Asadi-ENi									
Cita Physical Cita Physical Cita Physical Cita Physical Cita Physical Cita Physical Cita Physical Cita Physical Cita Physical Cita	tion: S.A. Etesami, and E. Asadi (2018), indexed size and Chemistry of Solids 112 , 61.77, poli: 10 tract: Availability of a reliable interatomi peratures and melting point (MP). Here, apply the approach on iron, nickel, coppe, and alur hent to the list of typical low temperature properties isonable agreement between the MD calculations of experimental/computational counterparts. Then, we arve that the behavior of elastic constants, heat cap P) for transition metals. Furthermore, a linear relation ered cubic materials.	1016/j.jpcs is one of a minum as c used for th melting prive present obacity and to on between	s 2017.09.001. The major chane pproach to add ase studies the development operties such a the physical pr thermal linear of the tetragona	ing temp anges in ut dress this of MD in as latent h operties of expansion al shear mo	erctures simulation tilizing molecular challenge in the sadding experim teratomic potent eat, expansion in f mentioned elen coefficient at roo odulus and the en	dynamics concept o ventally av lar parame melting, nents near mthalpy ch	tals using modifi (MD) for simula f modified-ember ailable high ten the Me show liquid structure r metting tempe rature compared lange from roon	fied embedd ations of me edded-atom nperature ek that the pro factor, and s ratures usin d to MP follo n temperatu	ed-atom method", s tals at near the mei (MEAM) interatomi astic constants and posed approach act face onormatic to face	Journal of ting tic potential; also, MP of the sults in a stiffness and arameters. We ear relation ($\alpha \pm \beta$ ad for face-
LAN	IMPS pair_style meam es: These files were sent by S. A. Etesami (Univers	sity of Men	nohis) on 23 Ar	oril 2018 a	nd posted with h	is permiss	sion. This versio	on is compat	ible with LAMMPS.	

File(s): Ni.meam

library.Ni.meam

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Ni

Citation: E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

Abstract: The two-phase solid–liquid coexisting structures of Ni, Cu, and AI are studied by molecular dynamics (MD) simulations using the second nearest-neighbor (2NN) modified-embedded atom method (MEAM) potential. For this purpose, the existing 2NN-MEAM parameters for Ni and Cu were modified to make them suitable for the MD simulations of the problems related to the two-phase solid–liquid coexistence of these elements. Using these potentials, we compare calculated low-temperature properties of Ni, Cu, and AI, such as elastic constants, structural energy differences, vacancy formation energy, stacking fault energies, surface energies, specific heat and thermal expansion coefficient with experimental data. The solid–liquid structure factor are also compared with experimental data. In addition, the solid–liquid structure factor are also compared with experimental data. In addition, the solid–liquid structure factor are also compared with experimental data.

Publication-derived unique identifiers

2018--Etesami-S-A-Asadi-E--Ni

DOI links to papers DOI: 10.1016/j.jpcs.2017.09.001.

Abstracts for all associated citations Abstract: Availability of a reliable interatomic temperatures and melting point (MP). Here, we we apply the approach on iron nickel copper

Consistent representations of:

- Citations
- Implementation formats
- Notes and descriptions

Content Now Stored on a CDCS Database

- "Potential" record for each entry
- Templates for other data types

Property Predictions

- Click on Potential ID to see computed properties
- Full methodology description
- Interactive plots
- Show by composition

Select a composition: Ni 🔻

Cohesive Energy vs. Interatomic Spacing for Ni

Download data

Click on plot to load interactive version

prototype	method	E _{ooh} (eV)	a ₀ (Å)	b ₀ (Å)	c ₀ (Å)	α (degrees)	β (degrees)	γ (degrees)
A1Cufcc	dynamic	-4.45	3.52	3.52	3.52	90.0	90.0	90.0
A3'alpha-Ladouble-hcp	dynamic	-4.4454	2.4874	2.4874	8.1423	90.0	90.0	120.0
A3Mghcp	dynamic	-4.441	2.4858	2.4858	4.0775	90.0	90.0	120.0
A2Wbcc	dynamic	-4.3666	2.8073	2.8073	2.8073	90.0	90.0	90.0
A15beta-W	static	-4.2399	4.5033	4.5033	4.5033	90.0	90.0	90.0
A5beta-Sn	static	-4.1082	4.4211	4.4211	2.3532	90.0	90.0	90.0
Ahalpha-Posc	static	-4.0531	2.2972	2.2972	2.2972	90.0	90.0	90.0
A4Cdc	static	-3.4783	5.0624	5.0624	5.0624	90.0	90.0	90.0

JARVIS-FF

Scope:

to **facilitate the user in choosing** the right potential for their needs by providing comparison of material properties computed with as many force fields as possible

- more than 3000 materials through more than 25000 classical force-field
- Force-fields obtained from NIST's IPR and LAMMPSpotential folder. DFT relaxed structures obtained from Materials-Project
- High-throughput LAMMPS calculations
- Relaxed structures, Elastic properties, Surface energies, Vacancy formation energies
- Properties available for download, code available on github:

https://github.com/usnistgov/jarvis

Jarvis-FF: Directly Compare Potentials to DFT

F. Tavazza, K. Choudhary

			н																	He		
			Li	Be											В	С	N	0	F	Ne		
			Na	Mg											AI	Si	Р	S	СІ	Ar		
			к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
			Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe		
			Cs	Ва	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rn		
			Fr	Ra	*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uud	þ	
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb I											Lu											
						1	Ac T	ſh F	Pa (ИU	lp P	u Ai	n Cr	n Bł	(Cf	Es	Fm	Md	No	Lr		
																	<u> </u>				<u> </u>	
JARVIS-ID	Formula	Space-group		Forc	e-field								B _v (GPa)		G _v (GPa)		Surface	energy		V	acancy energy	MPID
JLIVIP-1514	Fe	Im-om		re_5	eam.rs								77.0		09.4		Available			A	valiable	mp-13
JI MP-1215	Fe	Im-3m		Fe-N	i eam allo	W.							77.8		89.3		Available	2		Δ	vailable	mp-13
JLMP-1564	Fe	Im-3m		Felez	am.fs	9							177.9		89.3		Available			A	vailable	mp-13
JLMP-1510	Fe	lm-3m		Fe 2	.eam.fs								177.8		89.3		Available	;		A	vailable	mp-13
JLMP-1684	Fe	lm-3m		V-Fe	.eam.fs								77.9		89.4		Available	;		A	vailable	mp-13
JLMP-1569	Fe	lm-3m		Fe-P.	eam.fs								177.9		89.4		Available	•		A	vailable	mp-13
JLMP-1201	Fe	lm-3m		FeNi	Cr.eam.a	loy							18.3		46.2		Available	;		A	vailable	mp-13
JLMP-1520	Fe	lm-3m		Fe-C	_Hepbur	n_Ackland	d.eam.fs						179.0		89.4		Available	•		A	vailable	mp-13
JLMP-1187	Fe	lm-3m		FeNi	Cr_Bonny	/_2013_p	tDef.eam	alloy.					164.3		72.0		Available	•		A	vailable	mp-13
JLMP-1725	Fe	lm-3m		Fe.se	et								168.2		89.6		Available	•		A	vailable	mp-13
JLMP-1174	Fe	lm-3m		FeCu	Ni.eam.a	lloy							77.8		89.3		Available			A	vailable	mp-13

atomman: Atomistic Manipulation Toolkit

-20

-30

- Represent atomic systems in Python 20
- Designed generically and for classical 10 atomistics -10
- Dislocation generation and analysis functions
- Converters to/from ase, pymatgen, spglib
- Tools for setting up, running and analyzing LAMMPS calculations
- Supports the creation of Python calculation scripts around LAMMPS simulations

Generalized Stacking Faults of FCC Metals

Figure 1. GPFE for the (111) orientation. Colors denote energy in mJ/m².

C.A. Becker, F. Tavazza, L.E. Levine, Philosophical Magazine 91(27) (2011) 3578-3597. Z.T. Trautt, F. Tavazza, C.A. Becker, Model Simul Mater Sc 23(7) (2015).

iprPy Computational Framework

Iterate over

- Potentials Which interatomic potential should I use?
- Calculation methods
- Crystal structures
- Temperatures
- Configurations
- System dimensions
- Simulation parameters
- Other parameters

How do I address quantitative and qualitative uncertainty?

Are my results sensitive to parameter choice?

Are my results sensitive to methodology choice?

Can others use, learn and verify my work?

iprPy Computational Framework

"Insanity is doing the same thing over and over again, but expecting different results."

High-throughput is doing *almost* the same thing over and over again, and expecting different results.

High-throughput ≈ insanity?

"Insanity is <u>repeating the same mistakes</u> and expecting different results"

Simple Execution

- Independent unit of work
 - Not dependent on other calcs
 - No knowledge of framework
- Key-value input parameter files
- Can run calculation scripts from command line:

python calc_*.py calc_*.in

- Outputs JSON results
- Python package knows results schema (automatic interpret)

Input script for calc_E_vs_r_scan.px

#.Command.lines.for.LAMMPS.and.MPI
lammps_command....lmp_mpi
mpi_command....

3

· Initial · system · configuration · to · load
load_fileA1Cufcc.json
load_stylesystem_model
load_options
family A1Cufcc
symbolsAg
box_parameters

· System · manipulations
a_uvw
b_uvw
c_uvw
atomshift
sizemults

#.Units.for.input/output.values
length_unit
pressure_unit
energy_unit
force_unit

#·Run·parameters
minimum_r·····2.(
maximum_r6.(
number of steps r200

Simple Execution

- Independent unit of work
 - Not dependent on other calcs
 - No knowledge of framework
- Key-value input parameter files
- Can run calculation scripts from command line:

python calc_*.py calc_*.in

- Outputs JSON results
- Python package knows results schema (automatic interpret)

```
{ · · · · "calculation-E-vs-r-scan": · {
  ....."kev":."5aa662f4-17b4-4d22-955c-6d23e7d70e44",.
·····"calculation": ·{
....."iprPy-version":."0.8.1",.
   .....atomman-version": . "1.2.2", .
    ....."LAMMPS-version": ."26.Jan.2017-ICMS", .
   ...."script":."calc_E_vs_r_scan",.
   ·····"run-parameter": {
    ...."size-multipliers": {
    ····"a": ·[0, ·3], ·
   ····b": [0, .3], .
    ····"c": [0, -3] }, -
    ···· r": {
      ·····....value": 2.0, ·
    ....."unit": . "angstrom" }, .
    ···· maximum r": {
       ······"value": 6.0.
      ······unit":·"angstrom"},·
       ...."number of steps r": 200}},.
·····"potential-LAMMPS": · {
    .....id": . "2006--Williams-P-L--Ag--LAMMPS--ipr1", .
   ····"potential": {
   ·······id": * 2006--Williams-P-L--Ag"}},*
·····"system-info": ·{
·····*family": "A5--beta-Sn", ·
·····artifact": {
.....file":."A5--beta-Sn.jgon",.
.....format":."system_model",.
....."load options": .null},.
...."cohesive-energy-relation": {
····"r":-{
·····"value": •[
·····*unit": · "angstrom" }, ·
```

Jupyter Notebook versions

• Documentation, code and results in one sharable file

E_vs_r_scan Calculation

Lucas M. Hale, lucas.hale@nist.gov, Materials Science and Engineering Division, NIST.

Chandler A. Becker, chandler.becker@nist.gov, Office of Data and Informatics, NIST.

Zachary T. Trautt, zachary.trautt@nist.gov, Materials Measurement Science Division, NIST.

Version: 2018-06-24

Disclaimers

Introduction

The E_vs_r_scan calculation calculation creates a plot of the cohesive energy vs interatomic spacing, r, for a given atomic system. The system size is uniformly scaled (b/a and c/a ratios held fixed) and the energy is calculated at a number of sizes without relaxing the system. All box sizes corresponding to energy minima are identified.

This calculation was created as a quick method for scanning the phase space of a crystal structure with a given potential in order to identify starting guesses for further structure refinement calculations.

Disclaimer #1: the minima identified by this calculation do not guarantee that the associated crystal structure will be stable as no relaxation is performed by this calculation. Upon relaxation, the atomic positions and box dimensions may transform the system to a different structure

Disclaimer #2: it is possible that the calculation may miss an existing minima for a crystal structure if it is outside the range of values scanned, or has *b/a*, *c/a* values far from the ideal.

Method and Theory

An initial system (and corresponding unit cell system) is supplied. The r/a ratio is identified from the unit cell. The system is then uniformly scaled to all r_i values in the range to be explored and the energy for each is evaluated using LAMMPS and "ru 0" command, i.e. no relaxations are performed.

In identifying energy minima along the curve, only the explored values are used without interpolation. In this way, the possible energy minima structures are identified for r_i where $E(r_i) < E(r_{i-1})$ and $E(r_i) < E(r_{i+1})$.

Demonstration

1. Setup

11 Library imports

Make system a deepcopy of itself (protect original from changes)
system = deepcopy(system)

Set ucell = system if ucell not given
if ucell is None:
 ucell = system

Calculate the r/a ratio for the unit cell
r_a = r_a_ratio(ucell)

Get ratios of lx, ly, and lz of system relative to a of ucell lx_a = system.box.a / ucell.box.a ly_a = system.box.b / ucell.box.a lz_a = system.box.c / ucell.box.a alpha = system.box.alpha beta = system.box.gamma

```
# Build lists of values
r_values = np.linspace(rmin, rmax, rsteps)
a_values = r_values / r_a
Ecoh_values = np.empty(rsteps)
```

Loop over values
for i in range(rsteps):

Get Lammps units
lammps_units = lmp.style.unit(potential.units)

Run lammps and extract data

Basic execution

Prepare generates copies of a calculation each with a unique input file

Runner iteratively executes calculations

Database stores calculation records and archived calculation folders

L.M. Hale, Z.T. Trautt, C.A. Becker, MSMSE 26 (2018)

Making Prepare Easy and Powerful

- Call inline command with input file
 - ./iprPy prepare <database> <directory> <calculation> param.in
- Same keys as calculation!
 - But keys can have multiple values
 - Keys grouped in parameter sets
- Modularly defined generation functions
 - Example 1: prepare for all potentials with Al
 - Example 2: prepare using results

#.Build.load.information.based.on.prototype.records buildcombos.....crystalprototype.load_file.prototype prototype_potential_name....2004--Zhou-X-W--Al--LAMMPS--ipr2

#•System•man	nipul	ations		
a_uvw·····	• • • • •			
b_uvw·····				
c_uvw·····	• • • • •		•	
atomshift	• • • • •			
sizemults				3 - 3 - 3

#.Units.that.input/output.values.are.i
length_unit
pressure_unit
energy_unit
force_unit

#·Run·parameters

minimum_r	2.0
maximum_r	6.0
number_of_steps_r	100
number of steps r	200
number of steps r	300

Using Runners to execute

- Each runner works in one directory
 - Separate by # cores needed
 - Run on any resource
- Multiple active runners in same/different folders
- Submit runner script to cluster queue

IPR Calculation Workflow

Select a composition: Cu
Reference structure matches:
A1--Cu--fcc = mp-30, oqmd-635950
A2--W--bcc = mp-998890, oqmd-637373
A3'--alpha-La--double-hcp = mp-989695
A3--Mg--hcp = mp-989782
A6--In--bct = mp-1010136

prototype	method	E _{coh} (eV)	a ₀ (Å)	<i>b</i> ₀ (Å)	c ₀ (Å)	α (degrees)	β (degrees)	γ (degrees)
A1Cufcc	dynamic	-3.3207	3.4921	3.4921	3.4921	90.0	90.0	90.0
A3'alpha-Ladouble-hcp	dynamic	-3.3178	2.4697	2.4697	8.0474	90.0	90.0	120.0
A3Mghcp	dynamic	-3.315	2.4703	2.4703	4.0137	90.0	90.0	120.0
A6Inbct	static	-3.2913	2.8216	2.8216	2.6675	90.0	90.0	90.0
A2Wbcc	static	-3.2911	2.768	2.768	2.768	90.0	90.0	90.0
A15beta-W	dynamic	-3.2674	4.4406	4.4406	4.4406	90.0	90.0	90.0
A5beta-Sn	static	-3.1196	4.4717	4.4717	2.3422	90.0	90.0	90.0
Ahalpha-Posc	static	-3.0415	2.3038	2.3038	2.3038	90.0	90.0	90.0
A4Cdc	static	-2.5365	5.0444	5.0444	5.0444	90.0	90.0	90.0

Potential & Bulk Property Method Analysis

Addressing Qualitative Uncertainty

Dissociation along dislocation line

L.M. Hale, C.A. Becker, Computational Materials Science 135 (2017) 1-8.

Method Comparison

Atomistic versus analytic dislocation models

Repository of Calculations?

- "Verified" calculation methods
 - Alternates allowed
 - Repeatability across groups
- Accessible documentation
 - How to use, what parameters mean
 - Underlying theory
- Minimize implementation effort
 - Reuse parameters, modular code
 - What (time) cost would you spend on making code accessible to others?

Date modified: 6/25/2018 6:48 AM

Currently Available Calculations

- E_vs_r_scan: cohesive energy versus interatomic spacing
- relax_box: relax box dimensions only
- **relax_static**: relax using energy/force minimization
- relax_dynamic: relax using MD iterations
- crystal_space_group: space group analysis of system
- elastic_constants_static: small strain static C_{ij} calculation
- **point_defect_static**: compute point defect formation energy
- surface_energy_static: free surface formation energies
- **stacking_fault_static**: compute stacking fault energy for one shift
- **stacking_fault_2D_map**: generalized 2D stacking fault energy map

Calculations Partially Implemented

Collaborate: How Can We Help Each Other?

- Cross-listing potentials from other locations
 - openKIM
 - LAMMPS potentials folder
 - ...
- Integrating iprPy calculations into other infrastructures
- Uncertainty quantification of MD calculations
- Evaluating "reactive" potentials
- Incorporating your work to be open source and accessible?
 - Analysis methods in atomman
 - Property calculations in iprPy

Links

- Repository
 - <u>https://www.ctcms.nist.gov/potentials/</u> (current)
 - <u>https://www.ctcms.nist.gov/potentials/testing</u> (preview of new)
- atomman
 - <u>https://github.com/usnistgov/atomman</u> (code)
 - https://www.ctcms.nist.gov/potentials/testing/atomman (preview of docs)
- iprPy
 - <u>https://github.com/usnistgov/iprPy</u> (code)
 - <u>https://www.ctcms.nist.gov/potentials/testing/iprPy</u> (preview of docs)